LOCALITY PROPERTIES OF THE PROBLEM OF
HYDRODYNAMIC STABILITY

M. A. Gol'dshtik, V. A. Sapozhnikov,
and V. N. Shtern

Locality properties are formulated for short-wavelength disturbances in the problem of
hydrodynamic stability, which together with global flow stability enable us to study the
stability of particular sections of the stream, e.g., the flow core or the zone next to the
wall. The locality properties are illustrated in the spectrum of small perturbations of
plane Poiseuille flow and flows which are obtained by deforming a small section of the
Poiseuille parabola. Such a deformation produces points of inflection which lead to the
appearance of growing perturbations with wavelength of the order of the deformation
zone. It is shown that discontinuities in the velocity profile leads to the loss of stability
for high enough Reynolds' numbers.

1, Formulation of the Problem., The problem of hydrodynamic stability of the plane-parallel flow of
a viscous incompressible fluid reduces to an analysis of the eigenvalue spectrum of the Orr—Summerfeld
-equation [1]

eV — 2a2¢” + ate = ia R [(u — C) (9" — alp) — u"pl (1.1)
i<y )
Here u(y) is the velocity profile of the flow under investigation, ¢(y) is the complex amplitude of the
stream function for a harmonic perturbation, ¢ is the wavenumber, R is the Reynolds' number, C =X +1Y
is the required eigenvalue, X is the phase velocity of the perturbation, and Y characterizes the develop~
ment of the perturbation in time (Y < 0 corresponds to exponential damping).

A nontrivial solution of (1.1) should satisfy four homogeneous boundary conditions, for example,
the condition of adherence to the walls:
p(=1) =9 (+1) =0, (1.2)
For sufficiently smooth u(y) and finite R a denumerable set of functions Cp(a), n =1, 2, 3, ..., exists
where 0 = o < =, However, in order to analyze the stability of any profile u (y) &=C, (—1, 1) for a fixed R

it suffices to confine ourselves to investigating a finite number of spectral modes and a finite range of
variation of a.

In fact we shall assume that for certain values of the parameters
| C1>max ((u], |u"|) (1.3)
and so neglecting terms containing u and u" in (1.1), we have in the first approximation

C~—i(Pn-+a?)/aR (1.4)
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where B, are numbered in order of increasing modulus of roots of the equation

ftgfp+atha)(atghp—pBtha) =20 15
<2 Bl <alnt1) 15

The initial assumption (1.3) is satisfied for arbitrary values of « if n is large enough, and for arbi~-
trary n if o is small enough or large enough. Under these conditions (1.4) is valid, and thus Y is a large
negative number independent of u(y). However, for small spectral numbers n and intermediate values of
o the eigenvalue Cp(e) is strongly dependent on the form of the profile u(y).

If the following series expansion is made for small &,
C=C,la+ C+aCy+ .. {1.6)

it is not difficult to see that terms in the series depend on the integral of u(y). From (1.4) the first term
is independent of u(y).in geveral, while for the second term, for example, one can obtain, in the case of

symmetric perturbations,
1

Cy = S(i + 2cosfn cos ny — 3 cos 2nny) udy (1.7)
0
etec. Thus, for small o the eigenvalues depend on integrals of the profile, i.e., long~wavelength perturba-

tions are signs of the global average stability of the flow.

On the other hand, small local "roughnesses" of the velocity profile will not affect the behavior of
the long-wavelength perturbations, and any instability possible under these conditions will be associated
with the growth of short-wavelength perturbations whose wavelength is of the order of the roughness scale.

2. Locality Properties. Let

Vom;>1, o> 1 2.1)

Then the four fundamental solutions of (1.1) are described qualitatively by the following relations [1]
cutside a small region in the neighborhood of the critical point Y¢ (such that u(y.) = X):

P12~ eXP{iS ViaR (u— C)dy}, Pz, 0 ~ 8xp { =+ {y — )} (2.2)
yC

It should be noted that all the fundamental solutions satisfy the necessary condition of smoothness
over the whole interval ( —1, 1). Equation (2.2) onlystresses the factthatfour sach fundamental solutions
can be chosen, the modulus of whose amplitude will decrease or increase exponentially outside the small
neighborhood of Yeor

For simplicity, we consider the case when y, is sufficiently far away from the boundaries of the
interval. We construct a linear combination ¢4 of the two solutions of (2.2) whose amplitudes decrease in
modulus as we move to the right of y,, and a linear combination @4, of the solutions which decrease to the
left of y. ‘
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Redquiring that ¢ and @4, as well as their first three derivatives, should
coincide at the point Yo (or close to it), we obtain the characteristic equation for
C. The function ¢, constructed in this way decreases exponentially on both sides
of the critical point yo, and if

k=min{ld(yc—y1)l, 1\ V idR(u~C)dy]}

(where y, is one of the boundary points), the modulus of the amplitude of ¢, close
to the boundary points will be exp k times less than its value in the neighborhood
of y., and in view of the conditions (2.1) ¢, and its derivatives will be vanishingly
small. Many arbitrary homogeneous boundary conditions will be satisfied with an
accuracy of the order exp (—k). We now satisfy the boundary conditions exactly,
by adding to ¢, two fundamental solutions at each of the boundaries, which decrease
rapidly as we move from the boundary towards Yer In the region of y. these addi~
tions will then be of the order exp ( —2k).

Imposing the strict requirement that the solution should be continuous in the neighborhood of y,, we
find corrections to C and to the two solutions which decrease as we move away from the critical point,
which will also be of the order exp (—2k). Continuing this process which converges rapidly in view of the
conditions (2.1), we obtain a function ¢ in the limit which will be anontrivial solution of (1.1) for homo-
geneous boundary conditions.

The eigenfunction counstructed in this way is nonzero only in the small neighborhood of y, (finite) for
all practical purposes, and the dimension of the zone of finiteness, taking R > ¢ is

ly—yp|t/a (2.3)
In view of what has been said, the following locality properties can be formulated:

a) for practical purposes, the amplitude of the short-wave perturbation is nonzero ounly in the neigh~
borhood (of diameter ~ 1/a) of the point where the phase velocity of the perturbation coincides with the
local velocity of the flow;

b) the nature of the homogeneous boundary conditions lying outside the finiteness zone does not affect
the magnitude of the corresponding eigenvalue;

c¢) the magnitude of the eigenvalue depends only on the nature of the velocity profile of the fundamental
flow ia the finiteness zone (2.3). An arbitrary deformation of the velocity profile far from the critical point
ye does not affect the behavior of the short-wave perturbation.

3. The Eigenvalue Spectrum for Poiseuille Flow. A large number of papers, beginning with the
investigation of Lin [1], have been devoted to the stability of plane Poiseuille flow:

1

u="3% 01—y (S udy=,1> @.1)
0

The spectrum of small perturbations for some fixed values of o as a function of the Reynolds' number has
been calculated by Salwen and Grosch[2]. To illustrate the locality properties we shall consider the spec~
trum for a fixed Reynolds' number R = 10* over the whole range of variation of the wavenumber. Calcula~-
tions carried out by the authors are in complete agreement with those of [1, 2], where they intersect.

Figures 1 and 2 present the functions Cy () for the first eight spectral numbers (altogether 12 were
calculated). The eigenvalues are numbered for small o in accordance with (1.4) and (1.5), while the odd
spectral numbers correspond to symmetric perturbation modes. For small « the decrements follow the
function (1.4) (given in Fig. 2 by a dot—dash line for n = 1), while the phase velocities X, are close to the
average velocity of the flow [see, e.g., Eq. (1.7)]. Subsequently there is a radical rearrasgement in the
spectrum. The functions Yn(c) intersect for various spectral numbers. In particular it is interesting to
note that for @ ~ 1072 the most weakly damped perturbation is the antisymmetric mode (n = 2), while for
o > 1.5 itisthe symmetric mode withn =3, Nevertheless,the instability of Poiseuille flow is connected
only with the first symmetric mode as was assumed in [1].
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As « increases the perturbation modes divide into two distinet classes:

05—y
nw a) those close to the wall (u = 1, 2, 5, 8 in Figs. 1, 2), where the phase velo~
city tends to zero (i.e., the velocity of the wall) as o (or R) increases while yo —
P ] + 1;
b) those close to the axis (n = 3, 4, 6, 7), where the phase velocity tends to
the maximum velocity of the fundamental flow and y; —0.
5 \ = When o S R/10, the quantities y¢ — 0{a) extend to the function (1.4) for all
the modes.
e The functions Cy(e) in Figs. 1 and 2 give a good illustration of the second
T L5 7 locality property (b).
Fig. 4 When « > 2, the nature of the conditions on the channel axis (symmetry or

antisymmetry) ceases to be importaunt for the perturbations close to the wall,and
the eigenvalues corresponding to the symmetric and antisymmetric modes merge asymptotically as «
increases. The perturbations in the region of the axis also behave characteristically. While the phase
velocities are not very large (i.e., y, is comparatively far removed from the axis), the eigenvalues for the
symmetric and antisymmetric modes practically coincide for o> 0.5. However, for o > 10, when the axis
falls in the small region of the critical point, the conditions of symmetry or antisymmetry become impor-
tant and the corresponding eigenvalues stratify once again.

4. The Effect of a Local Deformation of the Velocity Profile. In order to illustrate the third locality
property (c) we investigate the eigenvalue spectrum of the profiles u(y) of the class

u=3/ (1 — y*) + sexp {~ 2000 (y — yo)%

The large factor in the index of the exponential ensures the locality of the deformation, y, is the point
in the neighborhood of which the deformation occurs, and € is the amplitude of the deformation,

The functions Y, ¥e) for the first four spectral numbers are given in Fig. 3 by the solidlinesfor ¢ =
0.02,y,=0,R= 10*, The dashed lines correspond to the Poiseuille parabola (& = 0).

In accordance with Fig. 1, small values of ¢ correspond to Yo ~ 0.2-0.6, while as « increases the
critical points tend to the axis (yc —0) and to the wall (y, —1).

For modes close to the wall (n =1,2) the functions coincide for € = 0 and ¢ = 0.02 within the limits of
accuracy of the graphical representation, i.e., a small deformation of the profile towards the axis does not
change the eigenvalues of the modes close to the walls, in complete agreement with the locality property (c).

The long-wavelength perturbations are also insensitive to a small deformation of the profile since
they depend upon its integral [see, e.g., Eq. (1.7)].

However, the short-wavelength perturbations close to the axis differ radically in these two cases, If
the third mode in Poiseuille flow is damped for all Reyoolds' aumbers, then for a deformed profile it con-
tains increasing perturbations even for R = 10%, as can be seeun from Fig. 3. This instability is associated
with the appearance of an inflection point in the profile, in accordance with the Tollmin—Rayleigh [1]
theorem. Numerical calculations show that as R increases, the critical point of the most rapidly increasing
perturbation tends to the inflection point y = 0.055. The fourth mode for R = 10* is damped in both cases,
but for the deformed profile with R > 1.7 10° it contains increasing perturbations, while the critical point
of the most unstable perturbation tends to the secound inflection point y = 0.016, In this latter case, the
instability is associated with antisymmetric perturbations.

The case in which € = 0.02, y, = 0.9 was also calculated, Under these conditions the eigenvalues of
the modes in the neighborhood of the axis did not differ from the case & = 0 to within three significant
figures, while for the short~wave perturbations close to the walls they differed significantly. It is charac-
teristic that since the increasing perturbations for Poiseuille flow are comparatively long-wave (o = 0.9
for the most unstable perturbation while R = 10% and decreases as ~ R“1/7), a small local deformation occurs
in the neighborhood of the critical point. However, in the process,increasing short-wave perturbations ap-
pear with a wavelength of the order of the deformation zone.
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5. The Most Unstable Perturbations. The fact that instability of the fundamental flow can be asso-
ciated with several spectral modes of the perturbations (as is clear from Fig, 3, for example) makes the
analysis of instability considerably more complicated. It should be noted, however, that it is sufficient to
investigate the local maxima of the functions Yy(a). If I = max, Y < 0 for all the modes, then stability
is certain.

For convex analytic profiles these maxima are divided into three groups (Figs. 1 and 2); long-wave
maxima with op,5x € 1(a = 1.5), which are respounsible for global stability of the flow, short-wave maxima
close fo the axis (n =3, 4, 6, 7) and long~wave maxima close to the wall (a = 1, 2, 5, 8), which are res-
pounsible for the local stability of the zones next to the axis and next to the walls, respectively. As n in-
creases, the critical points of the short-wavelength maxima tend to the point where the local velocity of
the stream coincides with the mean velocity along the channel,

In each of these groups there exists an n for which max,Y, lies above the others. In the case under
consideration, these are the first and third modes. In what follows those perturbations with wavelengths
corresponding to max, IT will be called the most unstable perturbations.

Since the locality properties enable us to examine global flow stability and the local stability of its
individual regions independently, we can treat the most unstable long-wave and short-wave perturbations
localized in the axial and the wall zones independently,

The mostunstable short-wave perturbations for symmetric convex profiles u(y) will be localized
close to the velocity maximum and close to the channel wall. Let the wavenumber o . of the most un-
stable perturbation be large enough so that in the region | y —y;| ¢ 1/a (where y; is the wall or the
channel axis respectively) we can represent the velocity profile in the form

u:u(yl)+Y(y—y1)"
i.e., the remaining terms in the power series expaunsion of u(y) can be neglected.

Using the locality properties we have, for large enough values of R, after some straight-forward
transformations

Omax == Oy | Ry jt/nt (5.1)

C(amax, ) = u(y1) + C,v | Ry [~/ (5.2)

Here ox and C* are certain constants associated with the quantity 1 and independent of R and .

Numerical calculations for short-wavelength maxima in the region of the walls and axis were carried
out within a wide range of variation of the parameters y and n for profiles of the type (3.1), and for a large
range of variation of the Reynolds' number. The functions (5.1) and (5.2) are well satisfied not only for
flows with integral n (Poiseuille and Couette flow, for example), but also for profiles with weak singulari-
ties in the region of the velocity maximum.

In particular, in connection with the principle of the maximum instability [3], the following family of
profiles was investigated: '
w=1—yy", 1<<n<?2

For R > 10° the functions (5.1) and (5.2) were satisfied with a high degree of accuracy for n > 1.2,
The function Im C, = Ti(a) constructed from numerical calculations for R = 10* is given in Fig. 4.

Calculations showed that for R > 10° profiles with n < 1,12 are unstable. Profiles with n < 1.12
smoothed out in a small neighborhood of y = 0 to prevent u" from going to infinity, were also unstable for
large R.

These results contradict those obtained by Potter [4] concerning the stability of triangular and near-
triangular velocity profiles. This is explained by the fact that Potter confined his investigations to modes
close to the wall, while the instability of the triangular profile is associated with the modes next to the
axis. '

6. Optimization of the Numerical Method. The locality properties enable the algorithm for numerical
calculations of the eigenvalues (1.1) to be optimized for large values of c.
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We introduce the functions Aij(y); i, j =1, 2 such that
e = Ay ¢" + A9, ¢ = An@" + A", A4yl =4

Requiring that ¢ should satisfy Eq. (1.1), we obtain a system of four nonlinear differential equations
for the coefficients of the matrix A. We shall integrate this system from one of the walls with the initial
conditions Aij =0; i, j =1, 2, which ensures that the adherence conditions (1.2) are satisfied for arbitrary
values of ¢" and ¢™. If the solution integrated from one of the walls is denoted by a plus superscript and
the other by a minus, and we require that ¢ and its first three derivatives should be continuous at the
critical poiut y, (or close to it), we obtain the characteristic equation for C:

det (A — A7)[,cy =0

Since the locality properties for large o mean that the eigenvalue is independent of the form of the
profile far from y, and of the nature of uniform boundary conditions on boundaries far from y;, the inte-
gration interval can be restricted to the small neighborhood of ¥ and consequently the homogeneous
boundary conditions can be transferred to the boundary of this region. This results in a considerable
economizing of machine time for large values of o without reducing the accuracy of the eigenvalue calcula~
tions.

In summing up, we note that the locality properties formulated above enable us, while investigating
the global stability of a given velocity profile, to investigate at the same time, but independently, the
stability of individual regiouns of this profile relative to perturbations of wavelength which do not exceed
the dimensions of the region.
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