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Loca l i ty  p r o p e r t i e s  a re  f o r m u l a t e d  for  sho r t -wave l eng th  d i s t u rbances  in the p r o b l e m  of 
hyd rodynamic  s tabi l i ty ,  which toge the r  with global  flow s tabi l i ty  enable us to s tudy the 
s tab i l i ty  of p a r t i c u l a r  sec t ions  of the s t r e a m ,  e .g . ,  the flow c o r e  or  the zone next to  the 
wall .  The loca l i ty  p r o p e r t i e s  a re  i l l u s t r a t ed  in the s p e c t r u m  of sma l l  p e r t u r b a t i o n s  of 
plane Poiseu i l l e  flow and flows which a re  obtained by de fo rming  a smal l  sec t ion  of the 
Po iseu i l l e  parabola~  Such a de fo rma t ion  p r o d u c e s  points  of inf lect ion which lead to the 
appea rance  of growing p e r t u r b a t i o n s  with wavelength  of the o r d e r  of the de fo rmat ion  
zone~ It is  shown that  d i scont inui t ies  in the ve loc i ty  prof i le  leads  to the loss  of  s tabi l i ty  
for  high enough R e y n o l d s '  n u m b e r s .  

1o F o r m u l a t i o n  of the P r o b l e m .  The p r o b l e m  of hydrodynamic  s tab i l i ty  of  the p l a n e - p a r a l l e l  flow of 
a v i scous  i n c o m p r e s s i b l e  f luid r e d u c e s  to an ana lys i s  of the e igeava lue  s p e c t r u m  of the O r r - S u m m e r f e l d  
equa t ion  [1] 

qflV __ 2(12(p" _~ aaq) = iv5 R [(tt - -  C) (q)" - a2q)) --  u"q~] 
( -~  < y ~< i) (1.1) 

Here  u(y) is the ve loc i ty  prof i le  of the flow under  inves t iga t ion ,  qv(y) is the complex  ampli tude of the 
s t r e a m  function for  a ha rmon ic  pe r tu rba t ion ,  a is the wavenumber ,  R is the Reyno lds '  number ,  C = X  + iY 
is the r e q u i r e d  e igenva lue ,  X is the phase  ve loc i ty  of the pe r tu rba t ion ,  and Y c h a r a c t e r i z e s  the deve lop-  
mea t  of the pe r t u rba t i on  in t ime (Y < 0 c o r r e s p o n d s  to exponent ia l  damping) .  

A nont r iv ia l  solut ion of (1.1) should sa t i s fy  four  homogeneous  boundary  condi t ions ,  fo r  example ,  
the condit ion of adherence  to the wal l s :  

qD ( •  i) = qr ( •  i) = 0 (1.2) 

F o r  suf f ic ien t ly  smoo th  u(y) and finite R a denumerab le  se t  of funct ions  Cn(a) ,  a = 1, 2, 3 . . . . .  ex is t s  
where  0 _< a < ~.  However ,  in o r d e r  to analyze  the s tabi l i ty  of any prof i le  u (g) ~ C~ ( - - l ,  1) fo r  a f ixed R 
it suf f ices  to confine o u r s e l v e s  to inves t iga t ing  a finite number  of s p e c t r a l  modes  and a finite range of 
va r i a t ion  of a .  

In fac t  we shal l  a s s u m e  that  for  ce r t a in  values  of the p a r a m e t e r s  

] C I>>  �9 max (] u [, [ u" I) (1.3) 

and so neglec t ing  t e r m s  containing u and u" in (1.1), we have in the f i r s t  approx ima t ion  

C ~ - - i ( ~ 2 + c r  (1.4) 
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where fin are numbered in order of increasing modulus of roots of the equation 

([~tg~-~ a t h a )  ( a t g ~ - -  6, tha )  = 0  

n n < 2  [[3= [ ~ n ( n + l )  
(1.5) 

The initial assumption (1.3) is satisfied for arbitrary values of ol if n is large enough, and for arbi- 
trary n [f c~ is small enough or large enough. Under these conditions (1.4) is valid, and thus Y is a large 
negative number independent of u(y). However, for small spectral numbers n and intermediate values of 

the eigenvalue Cn(~) is strongly dependent on the form of the profile u(y). 

If the following series expansion is made for small c~, 

C = C  o / ~ + C ! + a C 2 §  (1.6) 

it is not difficult to see that te rms  in the ser ies  depend on the integral of u(y). F rom (1.4) the f i rs t  (erm 
is independent of u(y) in general ,  while for the second term,  for example,  one can obtain, in the case of 
symmet r i c  per turbat ions,  

1 

C1 = f ( t ~- 2 cos nn cos nng -- 3 cos 2nny) udg (1.7) 
0 

etc.  Thus, for small  o~ the eigenvalues deoend on integrals of the profile,  i.e.,  long-wavelength pe r tu rba -  
tions are  signs of the global average stabil i ty of the flow. 

On the other hand, small  local "roughnesses"  of the velocity profile will not affect the behavior of 
the long-wavelength perturbat ions,  and any instability possible under these conditions will be associated 
with the growth Of short-wavelength per turbat ions whose wavelength is of the order  of the roughness scale.  

2. Local i ty Proper t i es .  Let 

]/&-R~ i, a >~ I (2.1) 

Then the four fundamental solutions of (1.1) are described qualitatively by the following relations [1] 
outside a small region in the neighborhood of the critical point Ye (such that u(yc) = X): 

q~l,2--exp{@-f V iaR(u - -C)dy} ,  % , ~ e x p < ~ a ( g - - g c ) }  (2.2) 
Y~ 

It should be noted that all the fundamental solutions sat isfy the necessa ry  condition of smoothness 
over  the whole interval  ( - 1 ,  1). Equation (2.2) on ly s t r e s se s  the fact that four such fundamental solutions 
can be chosen, the modulus of whose amplitude will decrease  or increase exponentially outside the small 
neighborhood of Yc" 

For  simplici ty,  we consider  the case when Yc is sufficiently far away f rom the boundaries of the 
interval .  We const ruct  a linear combination (p. of the two solutions of (2.2) whose amplitudes decrease  in 
modulus as we move to the right of Yc, and a linear combination q~** of the solutions which decrease  to the 
left of Yc" 
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Requiring that ~ and q0**, as well as their  f i rs t  three derivatives,  should 
coincide at the point Yc (or close to it), we obtain the charac ter i s t ic  equation for 
C. The function q00 constructed in this way decreases  exponentially on both sides 
of the cr i t ical  point Yc, and if 

k=min{ la(g~ I ]/iaR(u--'C)dgj} 
Yc 

(where Yl is one of the boundary points), the modulus of the amplitude of (P0 close 
to the boundary points will be exp k times less than its value in the neighborhood 
of Yc, and in view of the conditions (2.15 ~0 0 and its derivatives will be vanishingly 
small. Many arbitrary homogeneous boundary conditions will be satisfied with an 
accuracy of the order exp (-k). We now satisfy the boundary conditions exactly, 
by adding to ~o 0 two fundamental solutions at each of the boundaries, which decrease 
rapidly as we move from the boundary towards Yc" In the region of Yc these addi- 
tions will then be of the o rder  exp ( - 2 k  5. 

Imposing the s t r ic t  requi rement  that the solution should be continuous in the neighborhood of Yc' we 
find cor rec t ions  to C and to the two solutions which decrease  as we move away f rom the cr i t ical  point, 
which will also be of the order  exp (-2k).  Continuing this p rocess  which converges  rapidly in view of the 
conditions (2.15, we obtain a function q0 in the limit which will beanont r iv ia l  solution of (1.15 for  homo- 
geneous boundary conditions~ 

The eigenfunction const ructed  in this way is nonzero only in the small  neighborhood of Yc (finite) for 
all pract ical  purposes ,  and the dimension of the zone of finiteness, taking R > c~ is 

1g--go [ 4 i  / a  (2.35 

In view of what has been said, the following locality proper t ies  can be formulated:  

a) for  prac t ica l  purposes ,  the amplitude of the short-wave perturbation is nonzero only in the neigh- 
borhood (of diameter  ~ 1/(~) of the point where the phase velocity of the perturbation coincides with the 
local velocity of the flow; 

b 5 the nature of the homogeneous boundary conditions lying outside the finiteness zone does not affect 
the magnitude of the corresponding eigenvalue; 

c) the magnitude of the eigenvalue depends only on the nature of the velocity profile of the fundamental 
flow in the finiteness zone (2.35. An a rb i t r a ry  deformation of the velocity profile far f rom the cr i t ical  point 
Yc does not affect the behavior of the short-wave perturbation~ 

3. The Eigenvalue Spectrum for Poiseui l le  Flow. A large number of papers ,  beginning with the 
investigation of Lin [1], have been devoted to the stabili ty of plane Poiseuille flow: 

1 

0 

The spect rum of small perturbat ions for some fixed values of ~ as a function of the Reynolds '  number has 
been calculated by Salwen andGrosch  [2]. To i l lustrate the locality proper t ies  we shall consider  the spec-  
t rum for a fixed Reynolds '  number R = 10 4 over the whole range of variation of the wavenumber.  Calcula- 
tions c a r r i ed  out by the authors are in complete agreement  with those of [1, 2], where they intersect .  

F igures  1 and 2 present  the functions Cn(C 0 for the f i rs t  eight spect ra l  numbers  (altogether 12 were 
calculated). The eigenvalues are numbered for small  c~ in accordance with (1A) and (1.5), while the odd 
spect ra l  numbers  cor respond  to symmet r i c  perturbat ion modes. For  small  ~ the decrements  follow the 
function (1.4) (given in Fig. 2 by a d o t - d a s h  line for n = 1), while the phase velocities X n are close to the 
average velocity of the flow [see, e.g.,  Eq. (1.7)]. Subsequently there is a radical  r ea r rangement  in the 
spect rum.  The functions Yn((~) in tersec t  for  various spectra l  numbers .  In par t icular  it is interesting to 
note that for a ~ 10 .2 the most weakly damped perturbat ion is the ant isymmetr ie  mode (n = 2), while for 
o~ > 1.5 it is the symmet r i c  mode with n = 3. Never the less , the  instability of Poiseuil le flow is connected 
only with the f i rs t  symmet r i c  mode as was assumed in [1]. 
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As a increases the perturbation modes divide into two distinct classes: 

a) those close to the wall (n = I, 2, 5, 8 in Figs. I, 2), where the phase velo- 

city tends to zero (i.e., the velocity of the wail) as o~ (or R) increases while Yc -* 

• I; 

b) those close to the axis (n = 3, 4, 6, 7), where the phase velocity tends to 
the maximum velocity of the fundamental flow and Yc --* 0. 

When c~ ~ R/10, the quantities Yc --0(~) extend to the function (1.4) for all 

the modes. 

The functions Cn(o~ ) in Figs. 1 and 2 give a good illustration of the second 

locality property (b). 

When ce > 2, the nature of the conditions on the channel axis (symmetry or 

antisymmetry) ceases to be important for the perturbations close to the wail,and 
the eigenvalues corresponding to the symmetric and antisymmetric modes merge asymptotically as 
increases. The perturbations in the region of the axis also behave characteristically. While the phase 
velocities are not very large (i.e., Yc is comparatively far removed from the axis), the eigenvafues for the 
symmetric and antlsymmetric modes practically coincide for a> 0.5. However, for ~ > i0, when the axis 
falls in the small region of the critical point, the conditions of symmetry or antisymmetry become impor- 
tant and the corresponding eigenvalues stratify once again. 

4. The Effect of a Local Deformation of the Velocity Profile. In order to illustrate the third locality 
property (c) we investigate the eigenvalue spectrum of the profiles u(y) of the class 

u=3/9 (1--V ~)+ aexp {--2000(g--Vop} 

The large  fac tor  in the index of the exponent ia l  e n s u r e s  the loca l i ty  of the deformat ion ,  Y0 is the point 
in the neighborhood of which the deformat ion  occu r s ,  and ~ is the ampli tude of the deformation~ 

The functions Yn(Yc) for  the f i r s t  four s p e c t r a l  numbers  a re  given in Fig .  3 by the s o l i d l i n e s  for  e = 
0.02, Y0 = 0, R = 104. The dashed l ines  c o r r e s p o n d  to the Poiseu i l l e  p a r a b o l a  (~ = 0). 

In accordance with Fig. i ,  small values of ~ correspond to Yc ~ 0.2-0.6, while as ~ increases the 
critical points tend to the axis (Yc --0) and to the wall (Yc --1). 

For modes close to the wall (n = 1,2) the functions coincide for ~ = 0 and ~ = 0~ within the limits of 
accuracy of the graphical representation, i.e., a small deformation of the profile towards the axis does not 
change the eigenvalues of the modes close to the walls, in complete agreement with the locality property (c). 

The long-wavelength perturbations are also insensitive to a small deformation of the profile since 
they depend upon its integral [see, e.g., Eq. (1.7)]. 

However, the short-wavelength perturbations close to the axis differ radically in these two cases. If 
the third mode in Poiseuille flow is damped for all Reynolds' numbers, then for a deformed profile it con- 
tains increasing perturbations even for R = 104, as can be seen from Fig. 3. This instability is associated 
with the appearance of an inflection point in the profile, in accordance with the Tollmin-Rayleigh [1] 
theorem~ Numerical calculations show that as R increases, the critical point of the most rapidly increasing 
perturbation tends to the inflection point y = 0.055. The fourth mode for R = 104 is damped in both cases, 
but for the deformed profile with R > 1.7.105 it contains increasing perturbations, while the critical point 
of the most unstable perturbation tends to the second inflection point y = 0.016. In this latter case, the 
instability is associated with antisymmetric perturbations. 

The case in which e = 0.02, Y0 = 0.9 was also calculated, Under these conditions the eigenvalues of 
the modes in the neighborhood of the axis did not differ from the case ~ = 0 to within three significant 
figures, while for the short-wave perturbations close to the walls they differed significantly. It is charac- 
teristic that since the increasing perturbations for Poiseuille flow are comparatively long-wave (~ = 0.9 
for the most unstable perturbation while R = 104 and decreases as ~ R-t/7), a small local deformation occurs 
in the neighborhood of the critical point. However, in the process ,increasing short-wave perturbations ap- 
pear with a wavelength of the order of the deformation zone~ 
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5. The Most Unstable Per turbat ions .  The fact that instability of the fundamental flow can be a s so .  
ciated with several  spectra l  modes of the perturbat ions (as is c lear  f rom Fig. 3, for example) makes the 
analysis  of instabili ty considerably more complicated.  It should be noted, however, that it is sufficient to 
investigate the local maxima of the functions Yn(~). If II - maxa  Y < 0 for all the modes, then stability 
is cer ta in.  

For  convex analytic profi les  these maxima are divided into three groups (Figs. 1 and 2); long-wave 
maxima with C~ma x ~ l(n = 1.5), which are  responsible for global stability of the flow, short-wave maxima 
close to the axis (n = 3, 4, 6, 7) and long-wave maxima close to the wall (n = 1, 2, 5, 8), which are r e s -  
ponsible for the local stabili ty of the zones next to the axis and next to the wails, respect ively.  As n in- 
c r e a s e s ,  the cr i t ica l  points of the short-wavelength maxima tend to the point where the local velocity of 
the s t r eam coincides with the mean velocity along the channel. 

In each of these groups there exists  an n for which maxo~Y n lies above the others,  in the case under 
considerat ion,  these are the f i r s t  and third modes.  In what follows those perturbat ions with wavelengths 
corresponding to maxnII will be called the most  unstable per turbat ions .  

Since the locality proper t ies  enable us to examine global flow stability and the local stability of its 
individual regions independently, we can t rea t  the most unstable long-wave and short-wave perturbat ions 
local ized in the axial and the wall zones independently. 

The mostunstable  shor t -wave  per turbat ions for symmet r i c  convex profi les  u(y) will be localized 
close to the velocity maximum and close to the channel wall. Let the wavenumber amax of the most un- 
stable perturbat ion be large enough so that in the region I Y - Yi [ ~ 1/a (where Yl is the wall or the 
channel axis respect ively)  we can represen t  the velocity profile in the form 

= u ( y l )  + ~ ( y  - -  y l )  ~ 

i .e. ,  the remaining t e rms  in the power se r ies  expansion of u(y) can be neglected. 

Using the locality proper t ies  we have, for  large enough values of R, after  some s t ra ight - forward  
t ransformat ions  

~max = a,  [ RT I1/~+1 (5.1) 

Here ~ .  and C* are cer ta in  constants associa ted  with the quantity n and independent of R and 7. 

Numerical  calculations for short-wavelength maxima in the region of the wails and axis were ca r r i ed  
out within a wide range of variation of the p a r a m e t e r s  7 and n for  profi les  of the type (3.1), and for a large 
range of variation of the Reynolds '  number.  The functions (5.1) and (5.2) are well satisfied not only for 
flows with integral  n (Poiseuiile and Couette flow, for example), but also for profi les  with weak singulari-  
t ies in the region of the velocity maximum. 

In particular, in connection with the principle of the maximum instability [3], the following family of 

profi les  was investigated: 

u = l - - y y %  i ~ n ~ 2  

For  R > 10 3 the functions (5.1) and (5.2) were satisfied with a high degree of accuracy  for n > 1.2. 
The function Im C.  = II(n) const ructed  f rom numerica l  calculations for R = 10 ~ is given in Fig. 4. 

Calculations showed that for R > 10 3 profi les with n < 1.12 are  unstable.  Prof i les  with n < 1.12 
smoothed out in a small  neighborhood of y = 0 to prevent  u" f rom going to infinity, were also unstable for 
large R. 

These resul ts  contradict  those obtained by Pot ter  [4] concerning the stability of t r iangular  and near -  
t r iangular  velocity profi les .  This is explained by the fact that Pot ter  confined his investigations to modes 
close to the wall, while the instability of the t r iangular  profile is associa ted  with the modes next to the 

axis. 

6. Optimization of the Numerical  Method. The locali ty proper t ies  enable the algori thm for  numerical  
calculat ions of the eigenvalues (1.1) to be optimized for large values of ~. 
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We introduce the functions Aij(y); i, j = i, 2 such that 

= Al1~" -~ AI~  rlr, ~' = A21~" ~- A . ~  'It, ]] Ai~ [[ = A 

Requiring that (p should sat isfy Eq. (1.1), we obtain a sys tem of four nonlinear differential equations 
for the coefficients of the matr ix  A. We shall integrate this sys tem from one of the walls with the initial 
conditions Aij = 0; i, j = 1, 2, which ensures  that the adherence conditions (1.2) are  satisfied for a rb i t r a ry  
values of (p" and (p"'~ If the solution integrated from one of the walls is denoted by a plus superscr ip t  and 
the other by a minus, and we require that (p and its f i rs t  three derivatives should be continuous at the 
cr i t ica l  point Yc (or close to it), we obtain the charac te r i s t ic  equation for C: 

det(A + -  A-)]y=~c = 0 

Sinee the loeality proper t ies  for large a mean that the eigenvalue is independent of the form of the 
profile far f rom Ye and of the nature of uniform boundary conditions on boundaries far  from Yc, the inte- 
grat ion interval can be r e s t r i c t ed  to the small neighborhood of Yc and consequently the homogeneous 
boundary conditions can be t r ans f e r r ed  to the boundary of this region. This resul ts  in a considerable 
economizing of machine time for large values of oe without reducing the accuracy  of the eigenvalue calcula-  
tions. 

In summing up, we note that the locality proper t ies  formulated above enable us, while investigating 
the global stability of a given velocity profile,  to investigate at the same time, but independently, the 
stability Of individual regions of this profile relative to perturbat ions of wavelength which do not exceed 
the dimensions of the region.  
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